Bedava Sitem Super Aktif v1 Temasi
PAYLASİMCİNİ
BELLEKLER, MEMORY
BELLEKLER, MEMORY
BELLEK YAPISIMikroişlemcili sistemlerde bilgilerin geçici veya daimi olarak saklandığı alanlara bellek adı verilir. Sisteme girilen bilgilerin bir yerde depolanması ve gerekliğinde alınıp kullanılması için bir birim gerekliydi. Kelime Uzunluğu:Bir bilgisayar farklı sayıdaki mantıksal 0 veya 1'lerden meydana gelen çeşitli tipteki komutları işler 8-bit kapasiteli bir bilgisayar 28 = 256 farklı komuta sahiptir. Bu durumda bir bellek alanı 8-bitlik ifade edilirken bu bellek alanını kullanan mikroişlemcili sisteme de 8-bitlik sistem denir. Günümüz bilgisayarlarında çok özel olanlar hariç artık 64-bitlik sistemler ortak hale gelmiştir. Bellek Modülü :Bellek kelimesinin uzunluğundan başka bilgisayarın önemli bir karakteristiği de bu bellek kelimesinin bellekle nerede yer aldığını gösteren (adreslenmesinde kullanılacak) bit ifadesidir. 1 baytlık bir düzenle 256 farklı bellek adreslenebilir demektir. Şekilde iki tek bitlik bellek çiplerinin bir araya getirilerek oluşturulmuş bir bellek modülü görülmektedir. 8-bitlik bir mikrobilgisayarda 16-bit adresleme yolu bulunduğu düşünülürse, 216 = 65536 (2n = mantıksal 65535, buradan adres yolu hat sayısıdır) adet 8-bitlik adresleme kapasitesi var demektir. Böylece en düşük adres 00000000000000002=000016, en büyük adres ise, 11111111111111112 = FFFF16'dır.Bu adres sahası genel olarak onaltılık tabanda ele alınırlar. asitesine bağlıdır. Eğer sistemimiz 64K'lık bir bellek kapasitesine sahipse bellek adresi 16 bitle (2üssü16=65536 Bayt=64K) temsil edilir. Sistemdeki tek bir bellek çipini yazma ve okuma anında seçmek kolay olabilir fakat, birden fazla modül veya çip kullanıldığında yazma veya okumanın hangi modülde olacağı çip üzerinde ayrı ayrı tanımlanması gerekmektedir. Ram Bellekler ( Random Access Memory, -Rastgele Erişilebilir Bellek ) Statik RamStatik RAM, bipolar ve MOS teknolojisi uygulanarak yapılan bir bellek elemanıdır. Bu tip RAM'larda daha çok NMOS ve CMOS tekniği kullanılmaktadır. Adından da anlaşıldığa gibi, elektrik uygulanır uygulanmaz veri depolama yeteneğine sahip olan statik bipolar RAM hücresi, iki ayrı çift emiterli transistörün birbirine çapraz bağlanmasıyla meydana gelmiştir. Bipolar RAM'la MOS RAM arasında belirli bir ayrılık vardır. Bipolar RAM'ın tek bir hücresinde iki transistör ve akım sınırlayıcı iki direnç kullanılırken, bir MOS RAM hücresi tamamen N kanal MOSFET transistörlerden meydana gelmekledir, böylece bipolardaki karmaşıklık MOS'ta yoktur. Statik RAM'lerde bellek hücresi flip-flop'ları içerir. Flip flop (FP) içindeki bilgi, enerji kesilmedikçe depolanmaya devam eder. İsteğe göre yeniden silinir ya da depolanabilir. SRAM, DRAM' e göre çok daha pahalıdır ve işlemcilerde az miktarda kullanılmasının sebebi budur. İşlemci için adap edilmiş olan Level1 Cache SRAM' dır. Bilgisayar bir istekte bulun uğu zaman, ilk olarak Level ı Cache'e bakılır. Eğer istenen komut orda ise işlemci çok hızlı bir şekilde bilgiyi SRAM'den alır ve Level2 Cache'e bakmak için zaman harcamaz. Level 1 ve Level 2 SRAM Cache'ler işlemcinin hızını etkileyen en büyük faktördür. Dinamik RamKapasitörlü dinamik bellekte veri, belleğe verilen enerjinin 2-3 ms içerisinde kesilmesi halinde kaybolur. Bunun için verinin gerçek değerini bellekte koruyabilmesi için ara sıra tazelenmesi gereklidir. DRAM'in avantajı, az güç harcaması ve ucuz oluşudur. SRAM'da olduğu gibi DRAM'da da tek hir bellek hücresi dört hat arasına sıkıştırılmıştır. Bellek matrisine göre bu hücreler dizi biçiminde çoğalmaktadır. Şekilde görülen diyagramda veri okuma ve yazma soldan sağa doğru, giriş ve çıkış hatları yukardan aşağıya doğru düzenlenmiş olup, hücre bu hatlara a, b, c ve d noktalarından bağlanmıştır. Hücreyi oluşturan üç transistörden sadece birisi depolayıcı (Saklayıcı-D) olarak tasarlanmıştır. Bu Transistör bir bitlik bilgiyi üzerinde tutarken, depolama C kapasitörü vasıtasıyla yapılır. DRDRAM (Direct Rambus DRAM)INTEL'in yardımı ile hayata geçirilmiş olan bu bellek teknolojisi aynı miktardaki SDRAM' den çok daha pahalı. Normal işlemler' ve testlerde RDRAM erformansı SDRAM' e göre pek bir artış olmaması geleceğin bellek teknolojisinin DDR SDRAM olmasını kolaylaştıracak gibi. Şüphesiz bunun en önemli etkeni başarılı SDRAM bellek teknolojisi.ntel RAMBUS teknolojisi üreticilerinden. Bu yüzden INTEL gelişen işlemci teknolojisi ile birlikte RDRAM kullanılmasını istiyor. Fakat RDRAM'in yüksek fiyatı ile birlikte üreticileri i820 çipsetinin genelde SDRAM'li versiyonunu çıkarmaya başladılar. Bu arada bazı büyük sistem üreticileri (DELL gibi) yüksek fiyatlı sistemlerinde Intel' in yeni çipsetini ve RDRAM kullanmaya başladı. DDR SDRAM (Double Data Rate SDRAM)DDR SDRAM teknolojisi günümüzde yeni kullanılmaya başlanılan bir bellek teknolojisidir. Teorik olarak DDR SDRAM bellekler SDRAM belleğin sunduğu bant genişliğinin iki katını sunuyor. Bu RAM senkronize yani sistem veri yolu hızı ile aynı hızda çalışmaktadır. Bant genişliğini iki katına çıkaran özellik ise saat vuruşlarının yükselen ve alçalan noktalarından bilgi okuyabilme yeteneğinin olmasıdır. SDRAM' da ise bilgi alma yönU saat vuruşlarının yükselen Noktalarındandır. Buradan yola çıkarak teorik olarak 133 MHz hıza sahip olan DDR bellek 266 MHz hıza sahip olan SDRAM bellek ile aynı performansı verecektir. Band GenişliğiYonga setlerinde, ekran kartlarında, işlemcilerde, internet bağlantılarında, kısaca verinin taşındığı her ortamda bu kavram geçerlidir. Tanımlamak gerekirse, bant genişliğ, bir ortamda verinin ne kadar hızlı taşındığının ölçüsüdür. Kısaca, birim zamanda taşınan veri miktarıdır. Bu tanımı belleklere uygulayacak olursak, bellek modülümüzle anakart arasında belli bir süre içerisinde ne kadar veri alışverişi gerçekleşebiliyor sorusunun cevabı bant genişliğidir. önceden bahsettiğimiz gibi, DIMM’ler, anakarta 168 bitlik bir port üzerinden bağlı ve bunun 128 biti veri için ayrılmış durumda. SDR bellekleri ele alırsak, saat işaretinin her yükselen kenarında modül ve anakart arasında 128 bitlik veri transferi olduğu ve modülün saat frekansının birimi olan Hertz (Hz)’in aslında bir saniye içinde kaç saat periyodu sığdığını bize söylediği düşünülürse, saat frekansıyla 128-bit’i çarptığımızda, bir saniyede (birim zamanda) kaç bit (ne kadar veri) taşındığı kolayca hesaplanır ve bu da bize bit/saniye cinsinden bant genişliğini verecektir. Mesela, belleğimizin saat frekansı 166 MHz (Mega Hertz) olsun. Bu durumda SDR Belleğimizin Bant Genişliği :Band Genişliği=128bit * 166MHz = 21248000000 bit/saniye = 2656000000 byte/saniye =2.47 Giga Byte/saniye (GB/s) olarak hesaplanabilir. RAM' deki bilgiler geçicidir. Yani, bilgisayarınızda o anda çalışan programların, gerekli bilgileri RAM' de saklayarak daha sonra gerektiğinde kullanım için geri aldığı bir alandır. Diğer bir değişle bir geçici bellek görevindedir. Bilgiler gerektiğinde kullanılır. Gerekmediği zaman silinir. RAM üzerindeki bilgiler kısa ömürlüdür. Bilgisayarınızı kapattığınızda RAM' deki bilgiler 8-10 sn içersinde siliniyor. Bilgilerimizi uzun ömürlü olarak saklamak istiyorsak, manyetik alana kayıt yapan sabit diskleri kullanıyoruz. RAM Nasıl ÇalışırRAM i de bilginin saklanması için sürekli bir elektrik enerjisine ihtiyaç vardır. Bunu da bilgisayar açık olduğu zaman anakart (Mainboard) üzerinden temin eder. Dolayısıyla bilgisayarınızı kapattığınızda sürekli elektrik enerjisini alamaz ve RAM'de saklanan bilgiler yok olur. DRAM üzerindeki her modül üzerinde verileri kısa süreli olarak tutan kapasitörler bulunmaktadır. Bu veri RAM'in tutabileceği bir bitlik 1 ve O değerleridir. Eğer kapasitörler yarımdan fazla şekilde şarj edilmişse 1, yarım veya daha az bir şekilde şarj edilirse O değerini alır. Kapasitörler kuşkusuz üzerindeki şarjı çok çabuk kaybederler. Dolayısı ile bu şarj kaybından sonra bilgi kaybı olur. Bundan dolayı DRAM'lerde yenileyici devre dediğimiz yapılardan bulunur. SRAM' de ise her modülün yapısında ise 2 ile 4 transistör bulunur ve bir bit1ik 0 ve 1 değerlerini tutar. RAM TürleriBoyutlarına Göre RAM Bellekler30 pinli SIMM Bellek : Eski PCIlerde kullanılırdı. 4861lardan sonra kullanımdan kalktı. RAM belleğin ana karta bağlandığı yerdeki pin sayısı oldukça ufaktı ve küçük boyutlu bir bellek tipiydi. 72 pin SIMM Bellek: önce 1995 yılında Pentium ile ( Pentium 75, 90,100 vs.) kullanılmaya başlandı. Ancak Pentium II’lerle birlikte kullanımdan kalktı. Ana karta bağlandığı yerdeki diş sayısı 721iydi. 168 pin DIMM Bellek: Günümüz ana kartlarında bu 168 dişli bellekler kullanıyor. EDO ve SDRAM bellek modellerinde bu boyut kullanıldı. 184pin R-DIMM Bellekler: Günümüzde Intel ana kartlarında tercih edilen bu bellekler 184 pinlidir Üzerindeki Yongalara Göre RAM BelleklerStandart RAM Bellek : Günümüzde artık kullanımdan kalkmış durumdadır. Eski 386 ve 486 mikro işlemcili bilgisayarlarda kullanılan kullanılmış RAM türüdür. EDO RAM Bellek (Enhanced Dynamic Output) :72 pinlik slotlara takılırlar. EDO RAM' lerin erişim süreleri ise 60-70 ns (nanosaniye) arasında değişmektedir. Bu RAM'ler, DRAMılardan daha hızlıdır, 486 makinelerden sonra gelen Pentium işlemcili makinelerde kullanılmaya başlanmıştır. 1995 sonlarına kadar da bu böyleydi. Ancak, MMX teknolojisiyle birikte yavaş-yavaş SDRAM'lere geçilmeye başlandı ve günümüzde de yerini tamamen S-DRAM' lere bıraktı. Yeni çıkan PH ve PHI ana kartlarda artık EDO RAM için bir slot ayrılmıyor. SDRAM Bellek : 10-12 ns hızında ve 66 MHz veri .yolu hızlannda piyasaya girdi. Daha sonra 100 MHz veri yolunu kullanan işlemcilerle birlikte PC 1 00 standardında, 6-8 ns hızında olanlan çıktı. Bugün PC133 olanlan yaygın şekilde kullanılıyor. Daha sonra detaylı şekilde açıklanacak. DDR-SDRAM (Donble Data Rate SDRAM) :
RAMBUS DRAM (RDRAM) :Aynca Intel tarafından geliştirilen RD DRAM bellekler de var. SDRAM'ın üzerine konduğu plakaya DIMM deniyordu. Yeni plaka1ara RIMM deniyor. Daha sonra detaylı şekilde açıklanacak. Özelliklerine Göre RAM BelleklerPariteli RAM BellekBilgi 0 ve 1'ler halinde belleğe ulaştığında fazladan bir yonga ikili sayı düzeninde hesap yapıp toplam rakam yanlış gelirse veriyi geri gönderip tekrar hesap yapılmasını sağlıyor. Hata Düzeltmeli (ECC RAM) Bellek : Yanlış bilgiyi anladığında hatanın hangi O ve 1'de olduğunu çözüp düzeltiyor. SPD'1i RAM Bellek:100 ve 133 MHz veri yolunu kullanan sistemlerde bellekteki yongaya giderek durumunu sorguluyor; yonganın hız ve özelliklerini öğreniyor. Anakart bunu destekliyorsa gerekli bilgileri kullanarak komşu RAM'ler ile arabuluculuk yapıyor. RAM Hızlarının Gelişimi1994 ile 1995 yıllarından yani 486 işlemciler zamanından beri, sistem veri yolu hızı, hızlanan işlemciler karşısında sürekli geri kalmaya başlamıştı. O zamanlarda, Intel, işlemcilerini sadece 33-50 MHZ hızlarında üretebiliyordu. O günün şartlarına göre daha yukarı çıkılamadı, ama buna şöyle bir çözüm getirildi : Sistem veri yolu çarpanı. 486 DX2/50s ve 486 DX2/66S işlemcileri, Intel'in sistem veri yolu çarpanı sistemini uyguladığı ilk işlemcilerdi. 486 DX2/66s işlemcisinin sitem veri yolu hızı 33 MHz idi, ama 66 MHz hızda çalışabilmesi için 2.0X çarpanı uygulanmıştı. Bu yöntem kabul edilebilir bir yöntem gibi görünüyordu. Bir çok yönetici Intel 'in sistem veri yolu çarpanını uyguladığı 33 MHZ sistem veriyolu hızının (2.0X ile efektif olarak 66 MHz gibi performans gösteriyor) 33 MHz'lik bir işlemci kadar performanslı olmayacağında kanaatindeydi. Fakat zamanla bu kişiler yanıldı, ve 486 DX2/66 işlemcisi, 486 DX/33 işlemcisinde hızlı bir işlemci idi. Dolayısı ile, Intel ve diğer işlemci üreticilerinin sistem veri yolu çarpanı ile işlerine devam etmeleri sağlanmış oldu. Ama çarpan sayısı arttıkça performanstan tam verim sağlanamıyordu. 486 DX4/100 (gerçekte DX3/100 olacak: 33 MHz X 3.0x) gibi bir işlemcinin, sadece 100 MHz' de (çarpan sistemi uygulanmamış) çalışan bir işlemciden yavaş olacağı sonunda Intel' de kabul etti. Sonuç olarak, işlemci hızları sürekli artarken, sistem veri yolu hızı aynı paralelde artış gösteremedi ve günümüz sistemlerindeki yavaş bellek, genel performansın düşmesine sebep oldu. Genel DurumGünümüzdeki işlemcilerin saat çarpanı 10.0x'a kadar çıkmış durumda. Şu ana kadar, daha hızlı bir bellek alt sistemine bu kadar çok ihtiyaç duyulmamıştı. Günümüz PC'lerine baktığımızda, genel olarak bellek sistemlerinde SDRAM kullanılması gerekli. (RDRAM'lı i820 ve i840 yonga setleri, piyasanın çok az bir bölümünü oluşturuyor.) SDRAM (Senkronize DRAM), adı üzerinde senkronize, yani sistem veri yolu hızı ile aynı hızda çalışan anlamında. Günümüzde 100 MHz'lik işlemcilerden 133 MHz'lik işlemcilere geçiş olduğunu ve sistem bellek bant genişliğinde %33 'lük bir hızlanma olacağını düşünürseniz, bir çözüm var gibi. Ancak basit olarak, SDRAM hızının arttırılması tatmin edici düzeyde bir performans artışı beraberinde getirmiyor. 133 MHz'de çalışan SDRAM'ler küçük bir artışı ifade ediyor. örneğin 133 MHz'de çalışan bir SDRAM belleğin sunacağı maksimum veri bant genişliği 1,064 MB/sn. Elimizde, saniyede kullanabileceğimiz 1066 MB'lık bir veri bant genişliği var. Diğer taraftan ise, 133 MHz sistem veri yolu hızında çalışan bir işlemcinin saniyede 1 GB, AGP 4X veri yolunun saniyede 1 GB, 33 MHz'de çalışan PCI veri yolunun ise saniyede 132 MB 'lık bir bant genişliğine ihtiyacı var. Bunların hepsi birlikte 2.1 GB yapıyor. Yani sistem bizden saniyede 2.1 GB veri istiyor ama biz 1,066 MB'ını verebiliyoruz. Bu çalışmaları yavaşlatıcı bir durum. Burada 100 MHz'de ve 133 MHz'de çalışan bir SDRAM'in ne kadar veri bant genişliği sunduğunu şöyle hesaplanır. (100 MHZ çalışma Hızı) X (64-bit veri yolu) X (118 bit başına düşen byte) = 800 MB/sn ulaşılabilir bellek bant genişliği. Sistem veri yolu hızı 133 MHz'e çıktığında ise bellek bant genişliğinde %33 'lik bir artma söz konusu. (133 MHz çalışma Hızı) X (64-bit veri yolu) X (118 bit başına düşen byte) = 1064 MB/sn ulaşılabilir bant genişliği. Bu hızı yeni bant genişliği ile artırmak hem pahalı hem de sistem gelişmesini engelleyici olacağından ve de günümüzün PC'lerinin bellek bant genişliğinin sistem gerekli. Bunun için yakın geleceğin standart bellek teknolojisini belirleyecek iki aday var : Bellek Bant Genişliğini Arttırmak için iki Yöntem Bulunuyor:Veri yolu genişliğini arttırmak: Daha fazla veri pin'i eklenerek, aynı anda transfer edilen veri miktarı arttırılabilir. Fakat bu bir yere kadar devam ediyor. Pin sayısı arttıkça üretim maliyeti artacak, sürekli ana kart modelinde değişiklikler olacak, güç gereksinimleri farklılık gösterecek. Saat hızını artırmak: Saat hızı iki katına çıkarılarak aynı anda transfer edilen veri miktarı arttırılabilir. Bu da bir noktaya kadar. Yüksek saat hızlarında güvenli veri transferi gerçekleşir mi tartışılır. Güvenlik sorunu halledilebilir ama bunun için çok daha kaliteli PCB’ler (Baskılı Devre), bellek modülleri kullanılması gerekecek ve üretim maliyetini daha çok arttıracak. |